metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dicarbonyl[2-hydroxy-3,5,7-tris-(morpholinomethyl)cyclohepta-2,4,6trienonato(1–)- κ^2 O¹,O²]rhodium(I)

Tania N. Hill* and G. Steyl

Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa

Correspondence e-mail: tania.hill@gmail.com

Received 23 October 2008; accepted 14 November 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.034; *wR* factor = 0.070; data-to-parameter ratio = 19.7.

In the title compound, $[Rh(C_{22}H_{32}N_3O_5)(CO)_2]$, the Rh^I atom is coordinated by two carbonyl ligands and two tropolonate O atoms in a distorted square-planar geometry. It is an example of a new type of tropolone derivative that has not been characterized *via* solid-state methods. Weak intramolecular $C-H\cdots N$ and intermolecular $C-H\cdots O$ hydrogen bonds, and $\pi-\pi$ stacking interactions between the tropolone rings [centroid–centroid distance = 3.590 (8) Å] are observed in the crystal structure.

Related literature

For general background, see: Banwell *et al.* (1992); Boguszewska-Chachulska *et al.* (2006); Burgstein *et al.* (1998); Crous *et al.* (2005); Dewar (1945); Kierst *et al.* (1982). For a related structure, see: Steyl *et al.* (2004).

Experimental

Crystal data $[Rh(C_{22}H_{32}N_{3}O_{5})(CO)_{2}]$ $M_{r} = 577.44$ Monoclinic, C2/c a = 17.7889 (6) Å

b = 16.6106 (5) Å c = 17.7279 (4) Å $\beta = 105.772 (1)^{\circ}$ $V = 5041.1 (3) \text{ Å}^{3}$

Z = 8
Mo $K\alpha$ radiation
$\mu = 0.73 \text{ mm}^{-1}$

Data collection

Bruker X8 APEXII Kappa CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min} = 0.901, \ T_{\max} = 0.966$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ 316 parameters $wR(F^2) = 0.070$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.58$ e Å $^{-3}$ 5450 reflections $\Delta \rho_{min} = -0.55$ e Å $^{-3}$

Table 1 Selected bond lengths (Å)

ciccicu	oonu	lengtilis	(A).		

Rh1 - CO2 1.840 (2) $Rh1 - O2$	2.0212 (15)
D11 C02 1.040 (2) D11 C2	2 0212 (15)
Rh1-C01 1.835 (3) Rh1-O1	2.0209 (16)

T = 100 (2) K $0.15 \times 0.06 \times 0.05 \text{ mm}$

 $R_{\rm int} = 0.06$

36747 measured reflections 5450 independent reflections

4616 reflections with $I > 2\sigma(I)$

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C4-H4···N32	0.95	2.28	2.760 (3)	110
C6−H6···N72	0.95	2.31	2.785 (3)	110
$C36-H36A\cdotsO01^{i}$	0.99	2.59	3.497 (3)	153
$C53-H53A\cdots O55^{ii}$	0.99	2.56	3.509 (4)	161

Symmetry codes: (i) $x - \frac{1}{2}, y + \frac{1}{2}, z$; (ii) $-x - \frac{1}{2}, -y + \frac{3}{2}, -z$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Financial assistance from the University of the Free State and Professor A. Roodt is gratefully acknowledged. Mr L. Kirsten is acknowledged for the data collection. Part of this research is based on work supported by the South African National Research Foundation (NRF) (grant No. GUN 2068915). Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2163).

References

- Banwell, M. G., Corbett, M., Makay, M. F. & Richards, S. L. (1992). J. Chem. Soc. Perkin Trans. pp. 1329–1335.
- Boguszewska-Chachulska, A. M., Krawczyk, M., Najda, A., Kopanska, K., Stankiewicz-Drogon, A., Zagorski-Ostoja, W. & Bretner, M. (2006). *Biochem. Biophys. Res. Commun.* 341, 641–645.
- Brandenburg, K. & Putz, H. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burgstein, M. R., Berberich, H. & Roesky, P. W. (1998). Organometallics, 12, 1452–1458.
- Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). *Dalton Trans.* pp. 1108–1115.
- Dewar, M. J. S. (1945). Nature (London), 155, 141-145.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kierst, H. A., Markoni, G. G., Counter, F. T., Ensminger, P. W., Jones, N. D., Chaney, M. O., Toth, J. E. & Allen, N. E. (1982). J. Antibiot. 12, 1651–1659.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steyl, G., Kruger, G. J. & Roodt, A. (2004). Acta Cryst. C60, m473-m475.

Acta Cryst. (2008). E64, m1580-m1581 [doi:10.1107/S160053680803780X]

Dicarbonyl[2-hydroxy-3,5,7-tris(morpholinomethyl)cyclohepta-2,4,6-trienonato(1-)- $\kappa^2 O^1, O^2$]rhodium(I)

T. N. Hill and G. Steyl

Comment

Tropolone type compounds have been of interest since its first discovery in the early 1940's (Dewar, 1945), with applications in pharmacology (Banwell *et al.*, 1992; Kierst *et al.*, 1982) and catalysis (Burgstein *et al.*, 1998; Crous *et al.*, 2005). A recent report on the anti-viral activity of morpholine derivatives of tropolone (Doering Knox) indicated moderate to strong activity against the hepatitis C virus strain (Boguszewska-Chachulska *et al.*, 2006). The addition of morpholine groups to a compound increases its water solubility properties and thus simplifying the method of dosage, *i.e.*, pallative. Although this compound has been extensively studied, the preferred orientation of the morpholine groups are unknown, as well as the geometrical properties of the tropolone ring system. In this regard, we present a dicarbonyl rhodium(I) complex of a 3,5,7-tris(methylmorpholine)tropolonate ligand (Fig. 1; Table 1).

The molecular packing of the title compound is strongly influenced by the morpholine moieties as these form extensive hydrogen bonding networks (Table 2). A close Rh1…Rh1ⁱ contact [3.2826 (3)Å; symmetry code: (i) 1-x, y, 0.5-z] exists between associated metal centres. This short contact is stabilized by π - π stacking between the corresponding cycloheptatriene rings, with a centroid–centroid distance of 3.590 (8)Å and an interplanar angle of 3.99 (5)°. The slight twist of the two cycloheptatriene ring systems can be attributed to the methylmorpholine functional groups creating a sterically crowded environment.

The crystal packing of diketonate dicarbonyl rhodium(I) complexes tends to favour a head-to-tail packing mode. The [Rh(tropolonate)(CO)₂] complex (Steyl *et al.*, 2004) was deemed to be a singular occurance of the head-to-head packing mode of these molecular systems. The title compound exhibits a slightly distorted orientation as defined by the O1—Rh1—Rh1ⁱ—O2ⁱ torsion angle of 37.09 (3)°. This observation is surprising since the addition of bulky groups on the 3,7-positions was expected to force the molecular system in the head-to-tail packing mode. The π - π stacking and hydrogen bonding interactions stabilize the crystal structure.

Experimental

The title compound was synthesized by the addition of 3,5,7-tris(methylmorpholine)tropolone (0.083 g, 0.32 mmol) to an acetone solution of $[Rh(\mu-Cl)(CO)_2]_2$ (0.100 g, 0.29 mmol). On slow evaporation of the solvent, crystals suitable for X-ray analysis was obtained (yield 30%, 0.045 g).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (CH) and 0.99 (CH₂) Å and U_{iso} (H) = $1.2U_{eq}$ (C).

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

$Dicarbonyl [2-hydroxy-3,5,7-tris(morpholinomethyl) cyclohepta-2,4,6-\ trienonato(1-)-\kappa^2O^1,O^2] rhodium(I)$

Crystal data	
[Rh(C ₂₂ H ₃₂ N ₃ O ₅)(CO) ₂]	$F_{000} = 2384$
$M_r = 577.44$	$D_{\rm x} = 1.522 {\rm Mg m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 7078 reflections
<i>a</i> = 17.7889 (6) Å	$\theta = 2.4 - 26.3^{\circ}$
b = 16.6106 (5) Å	$\mu = 0.73 \text{ mm}^{-1}$
c = 17.7279 (4) Å	T = 100 (2) K
$\beta = 105.772 \ (1)^{\circ}$	Needle, yellow
V = 5041.1 (3) Å ³	$0.15 \times 0.06 \times 0.05 \text{ mm}$
Z = 8	

Data collection

Bruker X8 APEXII Kappa CCD diffractometer	4616 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{\rm int} = 0.06$
Monochromator: graphite	$\theta_{\text{max}} = 27.0^{\circ}$
ω and ϕ scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -23 \rightarrow 22$
$T_{\min} = 0.901, \ T_{\max} = 0.966$	$k = -22 \rightarrow 22$
36747 measured reflections	$l = -23 \rightarrow 21$
5450 independent reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0228P)^2 + 6.7535P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.034$	$(\Delta/\sigma)_{\text{max}} = 0.001$
$wR(F^2) = 0.070$	$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$

S = 1.015450 reflections 316 parameters $\Delta \rho_{min} = -0.55 \text{ e } \text{\AA}^{-3}$ Extinction correction: none

Fractional at	omic coordinates and is	otropic or equivalen	t isotropic displacem	nent parameters (\AA^2)
	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Rh1	0.005201 (12)	0.212518 (10)	0.158973 (11)	0.01523 (6)
N32	-0.29013 (12)	0.40449 (12)	0.14152 (12)	0.0184 (4)
N52	-0.09972 (13)	0.68641 (11)	0.11782 (12)	0.0193 (5)
N72	0.12652 (12)	0.55064 (11)	0.12939 (11)	0.0161 (4)
01	-0.09251 (10)	0.27724 (9)	0.15271 (9)	0.0164 (4)
02	0.04571 (10)	0.32572 (9)	0.15522 (9)	0.0168 (4)
O35	-0.44856 (11)	0.45215 (11)	0.09597 (11)	0.0291 (4)
O55	-0.14421 (12)	0.81072 (10)	0.00353 (12)	0.0338 (5)
075	0.19657 (11)	0.67733 (10)	0.06510 (10)	0.0272 (4)
C01	0.10082 (16)	0.16569 (13)	0.16882 (14)	0.0186 (5)
C02	-0.04121 (15)	0.11321 (14)	0.15654 (14)	0.0191 (5)
O01	0.16289 (11)	0.14149 (10)	0.17892 (10)	0.0266 (4)
O02	-0.07249 (11)	0.05334 (10)	0.15587 (11)	0.0271 (4)
C1	-0.00561 (14)	0.38233 (13)	0.15364 (13)	0.0139 (5)
C2	-0.08253 (15)	0.35538 (13)	0.15345 (13)	0.0153 (5)
C3	-0.14821 (14)	0.40295 (13)	0.15290 (13)	0.0148 (5)
C4	-0.15152 (15)	0.48618 (13)	0.15770 (13)	0.0164 (5)
H4	-0.2013	0.5066	0.158	0.02*
C5	-0.09482 (14)	0.54493 (13)	0.16221 (13)	0.0153 (5)
C6	-0.01989 (14)	0.53233 (14)	0.15582 (13)	0.0154 (5)
H6	0.0094	0.5803	0.1565	0.018*
C7	0.02014 (14)	0.46255 (13)	0.14867 (13)	0.0144 (5)
C31	-0.22148 (14)	0.35437 (14)	0.15082 (15)	0.0201 (5)
H31A	-0.231	0.3155	0.1069	0.024*
H31B	-0.2127	0.3232	0.2001	0.024*
C33	-0.34489 (15)	0.37470 (14)	0.18290 (15)	0.0212 (6)
H33A	-0.3175	0.3657	0.2388	0.025*
H33B	-0.3675	0.3228	0.16	0.025*
C34	-0.40884 (16)	0.43614 (16)	0.17571 (16)	0.0263 (6)
H34A	-0.4468	0.4161	0.2031	0.032*
H34B	-0.386	0.4868	0.2015	0.032*
C36	-0.39560 (15)	0.47768 (15)	0.05269 (15)	0.0236 (6)
H36A	-0.3727	0.5303	0.073	0.028*
H36B	-0.4245	0.4848	-0.0031	0.028*
C37	-0.33140 (15)	0.41744 (15)	0.05905 (14)	0.0222 (6)
H37A	-0.3537	0.3659	0.035	0.027*
H37B	-0.2944	0.4374	0.0305	0.027*
C51	-0.11655 (15)	0.63133 (13)	0.17494 (14)	0.0184 (5)
H51A	-0.173	0.6339	0.1716	0.022*
H51B	-0.0873	0.6486	0.2283	0.022*
C53	-0.15194 (17)	0.67127 (14)	0.04011 (14)	0.0239 (6)

H53A	-0.2069	0.6774	0.0416	0.029*
H53B	-0.1447	0.6155	0.0238	0.029*
C54	-0.1347 (2)	0.72976 (16)	-0.01803 (17)	0.0348 (7)
H54A	-0.0804	0.7217	-0.021	0.042*
H54B	-0.1703	0.719	-0.0706	0.042*
C56	-0.09308 (18)	0.82638 (16)	0.07909 (17)	0.0344 (7)
H56A	-0.1001	0.8827	0.0943	0.041*
H56B	-0.0383	0.8198	0.0773	0.041*
C57	-0.10926 (17)	0.76990 (14)	0.13928 (16)	0.0267 (6)
H57A	-0.0729	0.7815	0.1912	0.032*
H57B	-0.1632	0.7783	0.143	0.032*
C71	0.10184 (14)	0.46875 (13)	0.13924 (14)	0.0159 (5)
H71A	0.1388	0.4449	0.186	0.019*
H71B	0.1047	0.4365	0.0931	0.019*
C73	0.09197 (15)	0.58095 (14)	0.04982 (14)	0.0186 (5)
H73A	0.0344	0.5756	0.0361	0.022*
H73B	0.1115	0.5493	0.0117	0.022*
C74	0.11413 (16)	0.66843 (14)	0.04648 (15)	0.0226 (6)
H74A	0.0902	0.6898	-0.0068	0.027*
H74B	0.0937	0.6999	0.084	0.027*
C76	0.23202 (16)	0.64617 (15)	0.14098 (15)	0.0254 (6)
H76A	0.2148	0.6782	0.1804	0.031*
H76B	0.2895	0.6514	0.1524	0.031*
C77	0.21100 (15)	0.55855 (14)	0.14762 (15)	0.0214 (6)
H77A	0.231	0.5256	0.1107	0.026*
H77B	0.2353	0.5389	0.2015	0.026*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rh1	0.01874 (11)	0.01015 (9)	0.01714 (10)	0.00082 (8)	0.00544 (7)	0.00046 (8)
N32	0.0151 (12)	0.0180 (10)	0.0232 (11)	0.0017 (8)	0.0071 (9)	0.0042 (8)
N52	0.0243 (13)	0.0108 (9)	0.0241 (12)	0.0005 (8)	0.0087 (9)	0.0007 (8)
N72	0.0160 (12)	0.0147 (10)	0.0173 (11)	-0.0031 (8)	0.0044 (9)	0.0002 (8)
O1	0.0176 (9)	0.0104 (8)	0.0215 (9)	-0.0011 (7)	0.0059 (7)	0.0009 (6)
O2	0.0169 (10)	0.0116 (8)	0.0234 (9)	0.0009 (7)	0.0082 (7)	0.0007 (7)
O35	0.0178 (11)	0.0348 (11)	0.0350 (11)	0.0033 (8)	0.0075 (9)	0.0029 (8)
O55	0.0412 (14)	0.0205 (10)	0.0409 (12)	0.0053 (9)	0.0134 (10)	0.0108 (8)
O75	0.0316 (12)	0.0229 (9)	0.0280 (11)	-0.0096 (8)	0.0094 (9)	0.0049 (8)
C01	0.0276 (16)	0.0111 (11)	0.0180 (13)	-0.0013 (11)	0.0075 (11)	-0.0012 (9)
C02	0.0227 (15)	0.0181 (13)	0.0178 (13)	0.0044 (11)	0.0074 (11)	0.0012 (10)
O01	0.0241 (12)	0.0217 (9)	0.0331 (11)	0.0048 (8)	0.0065 (9)	0.0003 (8)
O02	0.0307 (12)	0.0167 (9)	0.0368 (11)	-0.0040 (8)	0.0141 (9)	-0.0027 (8)
C1	0.0171 (14)	0.0143 (11)	0.0112 (11)	-0.0002 (10)	0.0055 (10)	-0.0017 (9)
C2	0.0229 (14)	0.0124 (11)	0.0102 (11)	-0.0016 (10)	0.0036 (10)	0.0013 (9)
C3	0.0163 (13)	0.0152 (11)	0.0136 (12)	-0.0015 (10)	0.0053 (10)	0.0029 (9)
C4	0.0174 (14)	0.0169 (12)	0.0150 (12)	0.0032 (10)	0.0047 (10)	0.0014 (9)
C5	0.0191 (14)	0.0134 (11)	0.0134 (12)	0.0003 (10)	0.0042 (10)	0.0002 (9)

C6	0.0195 (14)	0.0147 (11)	0.0124 (12)	-0.0032 (10)	0.0052 (10)	-0.0004 (9)
C7	0.0150 (14)	0.0167 (11)	0.0112 (12)	-0.0031 (9)	0.0028 (9)	-0.0020 (9)
C31	0.0186 (14)	0.0156 (12)	0.0266 (14)	-0.0001 (10)	0.0069 (11)	0.0029 (10)
C33	0.0209 (15)	0.0174 (12)	0.0274 (14)	-0.0023 (10)	0.0102 (11)	0.0027 (10)
C34	0.0248 (16)	0.0270 (14)	0.0319 (16)	0.0018 (12)	0.0160 (13)	0.0032 (11)
C36	0.0230 (16)	0.0245 (14)	0.0227 (14)	0.0035 (11)	0.0051 (11)	0.0013 (11)
C37	0.0216 (15)	0.0230 (13)	0.0224 (14)	0.0026 (11)	0.0068 (11)	-0.0003 (10)
C51	0.0223 (15)	0.0149 (11)	0.0196 (13)	0.0022 (10)	0.0083 (11)	-0.0022 (10)
C53	0.0314 (17)	0.0162 (12)	0.0242 (14)	0.0038 (11)	0.0075 (12)	0.0005 (10)
C54	0.049 (2)	0.0275 (15)	0.0313 (16)	0.0108 (13)	0.0167 (14)	0.0063 (12)
C56	0.0318 (18)	0.0175 (13)	0.052 (2)	-0.0038 (12)	0.0075 (15)	0.0067 (12)
C57	0.0326 (17)	0.0140 (12)	0.0319 (15)	0.0007 (11)	0.0060 (12)	-0.0026 (10)
C71	0.0185 (14)	0.0131 (11)	0.0163 (12)	-0.0027 (10)	0.0054 (10)	-0.0018 (9)
C73	0.0207 (15)	0.0176 (12)	0.0172 (13)	-0.0026 (10)	0.0045 (10)	-0.0004 (9)
C74	0.0294 (17)	0.0188 (13)	0.0188 (13)	-0.0043 (11)	0.0050 (11)	0.0003 (10)
C76	0.0214 (15)	0.0232 (13)	0.0309 (15)	-0.0067 (11)	0.0057 (12)	0.0027 (11)
C77	0.0193 (15)	0.0186 (12)	0.0261 (14)	-0.0026 (10)	0.0060(11)	0.0000 (10)

Geometric parameters (Å, °)

Rh1—C01	1.835 (3)	C31—H31B	0.99
Rh1—C02	1.840 (2)	C33—C34	1.508 (3)
Rh1—O1	2.0209 (16)	С33—Н33А	0.99
Rh1—O2	2.0212 (15)	С33—Н33В	0.99
N32—C31	1.450 (3)	C34—H34A	0.99
N32—C33	1.456 (3)	C34—H34B	0.99
N32—C37	1.463 (3)	C36—C37	1.499 (3)
N52—C51	1.455 (3)	С36—Н36А	0.99
N52—C53	1.459 (3)	С36—Н36В	0.99
N52—C57	1.460 (3)	С37—Н37А	0.99
N72—C71	1.454 (3)	С37—Н37В	0.99
N72—C77	1.455 (3)	C51—H51A	0.99
N72—C73	1.466 (3)	C51—H51B	0.99
O1—C2	1.310 (3)	C53—C54	1.507 (4)
O2—C1	1.306 (3)	С53—Н53А	0.99
O35—C34	1.423 (3)	С53—Н53В	0.99
O35—C36	1.431 (3)	C54—H54A	0.99
O55—C54	1.421 (3)	C54—H54B	0.99
O55—C56	1.424 (3)	C56—C57	1.506 (4)
O75—C76	1.419 (3)	С56—Н56А	0.99
O75—C74	1.421 (3)	С56—Н56В	0.99
C01—O01	1.143 (3)	С57—Н57А	0.99
C02—O02	1.138 (3)	С57—Н57В	0.99
C1—C7	1.419 (3)	C71—H71A	0.99
C1—C2	1.439 (3)	С71—Н71В	0.99
C2—C3	1.408 (3)	C73—C74	1.511 (3)
C3—C4	1.387 (3)	С73—Н73А	0.99
C3—C31	1.525 (3)	С73—Н73В	0.99
C4—C5	1.390 (3)	C74—H74A	0.99

C4—H4	0.95	С74—Н74В	0.99
C5—C6	1.384 (3)	C76—C77	1.515 (3)
C5—C51	1.519 (3)	С76—Н76А	0.99
C6—C7	1.384 (3)	С76—Н76В	0.99
С6—Н6	0.95	С77—Н77А	0.99
C7—C71	1.511 (3)	С77—Н77В	0.99
C31—H31A	0.99		
C01—Rh1—C02	91.18 (11)	N32—C37—C36	109.8 (2)
C01—Rh1—O1	172.67 (8)	N32—C37—H37A	109.7
C02—Rh1—O1	95.85 (9)	С36—С37—Н37А	109.7
C01—Rh1—O2	93.89 (9)	N32—C37—H37B	109.7
C02—Rh1—O2	174.27 (9)	С36—С37—Н37В	109.7
O1—Rh1—O2	79.18 (6)	Н37А—С37—Н37В	108.2
C31—N32—C33	113.94 (19)	N52—C51—C5	112.45 (19)
C31—N32—C37	112.11 (19)	N52—C51—H51A	109.1
C33—N32—C37	109.3 (2)	C5—C51—H51A	109.1
C51—N52—C53	110.49 (19)	N52—C51—H51B	109.1
C51—N52—C57	110.82 (19)	C5—C51—H51B	109.1
C53—N52—C57	108.7 (2)	H51A—C51—H51B	107.8
C71—N72—C77	112.65 (19)	N52—C53—C54	109.8 (2)
C71—N72—C73	112.05 (18)	N52—C53—H53A	109.7
C77—N72—C73	108.68 (19)	С54—С53—Н53А	109.7
C2—O1—Rh1	114.49 (15)	N52—C53—H53B	109.7
C1—O2—Rh1	114.66 (14)	С54—С53—Н53В	109.7
C34—O35—C36	111.5 (2)	Н53А—С53—Н53В	108.2
C54—O55—C56	109.5 (2)	O55—C54—C53	111.4 (2)
C76—O75—C74	110.30 (19)	O55—C54—H54A	109.3
O01—C01—Rh1	174.5 (2)	С53—С54—Н54А	109.3
O02—C02—Rh1	177.1 (2)	O55—C54—H54B	109.3
O2—C1—C7	116.2 (2)	C53—C54—H54B	109.3
O2—C1—C2	115.77 (19)	H54A—C54—H54B	108
C7—C1—C2	127.9 (2)	O55—C56—C57	110.9 (2)
O1—C2—C3	116.5 (2)	О55—С56—Н56А	109.5
O1—C2—C1	115.8 (2)	С57—С56—Н56А	109.5
C3—C2—C1	127.7 (2)	O55—C56—H56B	109.5
C4—C3—C2	127.4 (2)	С57—С56—Н56В	109.5
C4—C3—C31	118.6 (2)	Н56А—С56—Н56В	108
C2—C3—C31	113.90 (19)	N52—C57—C56	110.4 (2)
C3—C4—C5	131.4 (2)	N52—C57—H57A	109.6
C3—C4—H4	114.3	С56—С57—Н57А	109.6
С5—С4—Н4	114.3	N52—C57—H57B	109.6
C6—C5—C4	126.1 (2)	С56—С57—Н57В	109.6
C6—C5—C51	116.4 (2)	Н57А—С57—Н57В	108.1
C4—C5—C51	117.5 (2)	N72—C71—C7	114.07 (19)
C7—C6—C5	131.7 (2)	N72—C71—H71A	108.7
С7—С6—Н6	114.2	С7—С71—Н71А	108.7
С5—С6—Н6	114.2	N72—C71—H71B	108.7
C6—C7—C1	126.7 (2)	С7—С71—Н71В	108.7
C6—C7—C71	119.2 (2)	H71A—C71—H71B	107.6

C1—C7—C71	114.0 (2)	N72—C73—C74	108.80 (19)
N32—C31—C3	112.75 (19)	N72—C73—H73A	109.9
N32—C31—H31A	109	С74—С73—Н73А	109.9
C3—C31—H31A	109	N72—C73—H73B	109.9
N32—C31—H31B	109	С74—С73—Н73В	109.9
C3—C31—H31B	109	Н73А—С73—Н73В	108.3
H31A—C31—H31B	107.8	O75—C74—C73	110.8 (2)
N32—C33—C34	108.66 (19)	O75—C74—H74A	109.5
N32—C33—H33A	110	С73—С74—Н74А	109.5
С34—С33—Н33А	110	O75—C74—H74B	109.5
N32—C33—H33B	110	С73—С74—Н74В	109.5
С34—С33—Н33В	110	H74A—C74—H74B	108.1
H33A—C33—H33B	108.3	O75—C76—C77	111.6 (2)
O35—C34—C33	111.7 (2)	O75—C76—H76A	109.3
O35—C34—H34A	109.3	С77—С76—Н76А	109.3
С33—С34—Н34А	109.3	O75—C76—H76B	109.3
O35—C34—H34B	109.3	С77—С76—Н76В	109.3
C33—C34—H34B	109.3	H76A—C76—H76B	108
H34A—C34—H34B	107.9	N72—C77—C76	109.4 (2)
O35—C36—C37	111.1 (2)	N72—C77—H77A	109.8
O35—C36—H36A	109.4	С76—С77—Н77А	109.8
С37—С36—Н36А	109.4	N72—C77—H77B	109.8
O35—C36—H36B	109.4	С76—С77—Н77В	109.8
С37—С36—Н36В	109.4	Н77А—С77—Н77В	108.3
Н36А—С36—Н36В	108		
C02—Rh1—O1—C2	179.63 (15)	C31—N32—C33—C34	174.1 (2)
O2—Rh1—O1—C2	-3.26 (14)	C37—N32—C33—C34	-59.6 (3)
C01—Rh1—O2—C1	-175.31 (16)	C36—O35—C34—C33	-56.2 (3)
O1—Rh1—O2—C1	2.28 (15)	N32—C33—C34—O35	58.3 (3)
Rh1—O2—C1—C7	-178.22 (15)	C34—O35—C36—C37	55.3 (3)
Rh1—O2—C1—C2	-1.0 (2)	C31—N32—C37—C36	-172.9 (2)
Rh1—O1—C2—C3	-177.12 (15)	C33—N32—C37—C36	59.7 (3)
Rh1—O1—C2—C1	3.7 (2)	O35—C36—C37—N32	-57.1 (3)
02—C1—C2—O1	-1.8 (3)	C53—N52—C51—C5	68.7 (3)
C7—C1—C2—O1	175.0 (2)	C57—N52—C51—C5	-170.8 (2)
O2—C1—C2—C3	179.1 (2)	C6-C5-C51-N52	51.4 (3)
C7—C1—C2—C3	-4.1 (4)	C4—C5—C51—N52	-128.3 (2)
O1—C2—C3—C4	176.3 (2)	C51—N52—C53—C54	179.0 (2)
C1—C2—C3—C4	-4.7 (4)	C57—N52—C53—C54	57.2 (3)
O1—C2—C3—C31	-0.5 (3)	C56—O55—C54—C53	59.1 (3)
C1—C2—C3—C31	178.6 (2)	N52—C53—C54—O55	-59.1 (3)
C2—C3—C4—C5	1.8 (4)	C54—O55—C56—C57	-58.6 (3)
C31—C3—C4—C5	178.4 (2)	C51—N52—C57—C56	-179.0 (2)
C3—C4—C5—C6	6.2 (4)	C53—N52—C57—C56	-57.4 (3)
C3—C4—C5—C51	-174.1 (2)	O55—C56—C57—N52	58.8 (3)
C4—C5—C6—C7	-4.5 (4)	C77—N72—C71—C7	159.88 (19)
C51—C5—C6—C7	175.8 (2)	C73—N72—C71—C7	-77.2 (2)
C5—C6—C7—C1	-6.5 (4)	C6—C7—C71—N72	-6.9 (3)
C5—C6—C7—C71	177.4 (2)	C1—C7—C71—N72	176.48 (19)

O2—C1—C7—C6	-171.5 (2)	C71—N72—C73—C74	174.7 (2)
C2—C1—C7—C6	11.7 (4)	C77—N72—C73—C74	-60.2 (2)
O2—C1—C7—C71	4.8 (3)	C76—O75—C74—C73	-58.6 (3)
C2-C1-C7-C71	-172.0 (2)	N72—C73—C74—O75	60.3 (3)
C33—N32—C31—C3	-145.6 (2)	C74—O75—C76—C77	57.3 (3)
C37—N32—C31—C3	89.6 (2)	C71—N72—C77—C76	-176.41 (19)
C4—C3—C31—N32	9.4 (3)	C73—N72—C77—C76	58.8 (2)
C2—C3—C31—N32	-173.6 (2)	O75—C76—C77—N72	-57.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C4—H4…N32	0.95	2.28	2.760 (3)	110
С6—Н6…N72	0.95	2.31	2.785 (3)	110
C36—H36A···O01 ⁱ	0.99	2.59	3.497 (3)	153
C53—H53A···O55 ⁱⁱ	0.99	2.56	3.509 (4)	161

Symmetry codes: (i) *x*-1/2, *y*+1/2, *z*; (ii) -*x*-1/2, -*y*+3/2, -*z*.

